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Igor Žutić and Oriol T. Valls

School of Physics and Astronomy and Minnesota Supercomputer Institute, University of Minnesota, Minneaspolis, Minnesota 55455-0149
E-mail: otvalls@maroon.tc.umn.edu, izutic@physics.spa.umn.edu.

Received November 12, 1996

macroscopic region V , R3, in the presence of an applied
uniform magnetic field, Ha . For Ha below some criticalWe present a method to compute the magnetic moment of a bulk,

finite-size, three-dimensional, anisotropic superconductor. Our nu- value, superconductors are in the so called Meissner regime
merically implemented perturbative procedure is based on a solu- [2], where the magnetic flux is expelled from the bulk of
tion of the nonlinear Maxwell–London electrodynamic equations, the sample. Their behavior is similar to that of material
where we include the nonlinear relation between current and gauge

which is both an ideal conductor and an ideal diamagnet.invariant velocity. The method exploits the small ratio of the finite
The applied magnetic field generates a resistance-free cur-penetration depths to the sample size. We show how to treat the
rent which produces a magnetic field that opposes Ha .open boundary conditions over an infinite domain and the continu-

ity requirement at the interface. We demonstrate how our method As a consequence, everywhere except very close to the
substantially reduces the computational work required, and discuss interface (within a few penetration depths), the magnetic
its implementation to an oblate spheroid. The numerical solution field vanishes: this is known as the Meissner effect. Except
is obtained from a finite-difference method. We briefly discuss the

for the most trivial geometries such as infinite slabs orrelevance of this work to similar problems in other fields. Q 1997
isotropic spheres, the relevant boundary value problemAcademic Press

becomes then numerically very awkward: basically one is
faced with solving the appropriate electrodynamic equa-
tions in the entire space, not just in V, while the mostI. INTRODUCTION
important variation of the fields takes place in a very thin
boundary layer in V.A large number of problems in electrodynamics and

related areas such as fluid dynamics, involve the solution This question has come recently to the fore in the context
of the study of high temperature superconductorsof partial differential equations for certain fields inside and

outside a finite region of a definite geometrical shape. For (HTSCs). Identifying the symmetry of the paired electrons,
the so called pairing state, in these materials, would providemany common geometries, and when the boundary condi-

tions are simple (e.g., fields or their normal derivatives an important clue to the still unknown mechanism respon-
sible for superconductivity in HTSCs. It turns out [3–6]vanishing at the boundaries) the solution can be found,

often with ease, from analytical or simple numerical meth- that careful measurements of certain electrodynamic prop-
erties in superconductors, can provide fingerprints for theods. However, for more complicated situations where one

has less trivial boundary conditions, or when the equations nodal structure of the order (gap) parameter [5] (i.e. the
points or lines in the Fermi surface where it vanishes). Theare made more complicated by the presence of nonlinearit-

ies, analytical methods may be unavailable and numerical unconventional pairing states which are widely believed
to exist in HTSCs, produce nonlinearities in the electro-techniques encounter serious difficulties.

One of these situations pertains to the electrodynamics magnetic response. As we shall see, the resistance-free
current, in addition to the usual terms linear in the super-of a superconducting sample of finite size. It is well-known

that in the limit where the electromagnetic fields do not fluid velocity, includes a small contribution for which the
current-velocity relation is nonlinear. These nonlinearitiespenetrate the sample the problem can be rather easily

solved [1]. However, this is hardly ever the case of interest: then give rise [4, 6], in the Meissner regime, to a magnetic
moment which has a small but detectable transverse com-the physical information one obtains in experiments comes

in fact from the penetration of the fields inside the sample, ponent, m' , perpendicular to the field Ha even when this
is applied along a direction of symmetry of the sample.characterized by penetration depths which, although small,

cannot be neglected. This occurs when the applied field lies in the a 2 b crystallo-
graphic plane [7] (the z-axis is taken to be along the cConsider a superconductor that occupies a bounded,
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crystallographic direction). The angular dependence of the context of superconducting electrodynamics, it will not
escape the reader’s notice that our procedures can betransverse component m' , as the crystal is rotated about

the z axis, reflects directly the symmetry of the pairing adapted to many other problems in which one is faced
with a small ‘‘skin depth’’ or similar parameter involvingstate. It is this quantity that has been experimentally stud-

ied [8] for purposes of the identification of the pairing state. the penetration of fields or of their derivatives inside a
region, and the problem can be more easily solved in theThe physics of the situation has been extensively dis-

cussed in [6], and we deal here with the mathematical and limit where this parameter vanishes.
numerical implications. The computation of the magnetic

II. MAXWELL–LONDON ELECTRODYNAMICSmoment requires the solution of a problem of precisely
the kind described in the previous paragraphs. One must

A. Maxwell–London Equationssolve the appropriate electrodynamics, the Maxwell–
London equations described in Section II, for all space, We begin by introducing the steady state Maxwell–
since at infinity the boundary condition requires that H R London equations [9–11] that provide the framework to
Ha . On V these equations contain, as we shall see, im- compute the field distributions we need in order to evaluate
portant and nontrivial nonlinearities. A solution in the the magnetic moment.
limit of zero penetration of the fields in the sample is As stated in the Introduction we consider a superconduc-
possible, but it would be completely inadequate, since it tor in an applied uniform magnetic field Ha that occupies
would reflect only the geometry and not the detailed elec- a bounded simply connected region V , R3 and at its
tromagnetic response of the superconductor. On the other boundary, ­V, is surrounded by vacuum. On R3\V the
hand, the numerical solution for the nonlinear electrody- current is j 5 0 and therefore in the steady state the local
namics in all space would be computationally demanding. magnetic field H satisfies the Maxwell equations

In this paper we present a discussion of the methods that
we have developed to obtain results [6] for the nonlinear = · H 5 0 (2.1a)
magnetic moment, including both the longitudinal and

= 3 H 5 0. (2.1b)transverse components, in HTSCs. These methods involve
the numerical implementation of a perturbation scheme in

The problem reduces to that of finding a magnetic scalarwhich the small expansion parameter is the appropriately
potential F that satisfiesdefined ratio of an effective penetration depth to a charac-

teristic dimension of the superconductor. We will show
H 5 2=F (2.2a)that this numerical implementation reduces the problem

essentially to that of finding the numerical solution in V. =2F 5 0. (2.2b)
In the region R3\V outside the sample, one turns out to
need only a solution for the scalar Laplace equation with On V the relevant fields are H, the superconducting current
trivial Neumann boundary conditions. For a sufficiently j, and the ‘‘superfluid velocity field’’ vs [10] defined as
symmetric V, the form of the solution can be obtained
analytically, while for some other cases a numerical solu-

vs 5
=x

2
1

e
c

A, (2.3)tion would suffice.
In Section II we discuss the nonlinear Maxwell–London

equations for a superconductor and show how they give where x is the phase of the superconducting order parame-
rise to the magnetic moment. The geometrical shapes we ter, A the vector potential, and e the proton charge, (with
have considered for V (dictated by experimental consider- " 5 kB 5 1). The field vs is conventionally defined as above,
ations) are discussed in Section III where we introduce the and actually has units of momentum. The relation between
general solution in R3\V. In Section IV we discuss the vs and H is given by the second London equation [10]:
computation of the magnetic moment and present the main
result of this paper, the perturbative method and its numer-

= 3 vs 5
e
c

H. (2.4)ical implementation. Numerical considerations for the
equations in V are described in the Section V. In Section
VI, the equations are solved for the previously discussed In the steady state the appropriate Maxwell equation is
geometry, using a modified Gauss–Seidel relaxation, with Ampère’s law,
the nonlinear terms (which are nonanalytic) included
through Picard’s method. We also illustrate the general

= 3 H 5
4f
c

j, (2.5)
ideas of the perturbation method. Finally, in Section VII
we give conclusions and guidelines for possible improve-
ments and generalizations. While our discussion is in the substituting Eq. (2.4) into (2.5) we obtain:
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penetration depth, which we shall denote by l. In a macro-
= 3 = 3 vs 5

4fe
c2 j(vs) (2.6) scopic sample the ratio « 5 l/d is a very small quantity. This

small ratio is essentially what will be used in this work to
which is the general equation that will be investigated in develop a perturbation method to compute the magnetic
this article. It must be supplemented by a relation, j(vs), moment to first order in «. The starting point of this proce-
which will be discussed in IIC, to be substituted in its right- dure is the existence of a solution in the limit « R 0 (when
hand side (RHS). Eq. (2.6) must then be solved together all the nonlinear effects vanish), which corresponds to im-
with Eq. (2.2) and the proper boundary conditions. posing trivial Neumann boundary conditions on ­V. For a

The required boundary conditions are the following: first suitable choice of V, such as an ellipsoid, the form of this
at infinity one must have, solution may be found analytically. The perturbation

method may also be applied, as we shall see, in certain cases
2=F 5 Ha . (2.7) when only a numerical solution in the small « limit available.

The components of m parallel and perpendicular to Ha
Second, deep inside the sample all fields must vanish. applied along a direction of symmetry, can generically be
Third, H must be continuous [9, 11, 12] on the boundary written for « ! 1 in the form
­V. Finally, the currents are confined to the superconduct-
ing material, j · n 5 0 in ­V, n is the unit normal pointing mi 5 m0(1 2 ai « 1 O(«2)) (2.9a)
outwards. The first boundary condition (at an open bound-

m' 5 m0(a' « 1 O(«2)), (2.9b)ary over an infinite domain) can be satisfied by construction
of the solution in R3\V. The remaining boundary condi-

where m0 denotes the longitudinal magnetic moment intions have to be implemented in the numerical algorithm.
the limit l 5 0, (and therefore « 5 0), which is proportionalBecause of these boundary conditions we see that, as
to Ha . It depends only on the geometry of V and thereforeemphasized in the Introduction, this problem can indeed
contains no physical information. For V in the shape ofbe computationally very demanding. It involves solving
an ellipsoid, values are given in [1]. For finite l there is anonlinear differential equations, in principle in an un-
reduction, linear in the field to leading order, in the abso-bounded region, but with the relevant fields varying very
lute value of mi . This reduction is due to current penetra-rapidly in a small region inside the material. We will see
tion in the material and it implies a positive constant ai . Forhere and in the next Sections how these difficulties can be
a very few simple geometrical shapes and linear, isotropic,overcome, for suitable geometries, by making use of a
Maxwell–London equations, values of ai are given in text-numerical implementation of a perturbation scheme.
books [9, 14]. When nonlinear effects are included, they
contribute a correction to ai linear in the field, but theirB. The Magnetic Moment
most conspicuous effect is the appearance, in general, of

Let us at this point introduce some considerations that nonvanishing values of a' , also proportional to the field
point to the eventual way out of these numerical difficulties. [5, 6]. It is for this reason that the transverse component
We recall that the quantity of interest here is the magnetic is the physical quantity of interest.
moment m. From the current distribution j in V, the mag- We next derive an alternative expression for m that helps
netic moment can be obtained by volume integration [13] to fully exploit the existence of the small parameter «.

Using Eqs. (2.1), (2.5), and formulas for vector calculus [15]
one can transform the quantity in the integrand of (2.8):m 5

1
2c

E
V

dV r0 3 j(r0), (2.8)

r 3 (= 3 H) 5 =(r · H) 2 (r · =)H 2 H (2.10)
where r0 is the position vector for a point in the region V.

(r · =)H 5 2= 3 (r 3 H) 2 2H. (2.11)An important consequence of nonlinear Maxwell–
London electrodynamics and unconventional pairing states

After substitution of Eq. (2.11) into Eq. (2.10),is that m need not be aligned with the applied field Ha

even if the latter is applied along a direction of geometrical
r 3 (= 3 H) 5 =(r · H) 1 = 3 (r 3 H) 1 H, (2.12)symmetry, (along a principal axis of the demagnetization

tensor [1] of the body). For simplicity, we will restrict integration over V and use of Gauss’ theorem yields
ourselves to this case here, although it is straightforward
to add the complications arising from a non-diagonal de-

m 5
1

8f
E

­V
dS [n(r0 · H) 1 n 3 (r0 3 H)]

(2.13)
magnetization tensor.

Let us introduce here, for a typical macroscopic experi-
mental HTSC sample, the ratio between some length d char-

1
1

8f
E

V
dV H ; m1 1 m2 ,

acterizing its size, and the characteristic value of the London
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where r0 is the position vector for a point on ­V. The (z2 1 uD(s)u2)1/2, T the absolute temperature and D(s) is
the superconducting order (gap) parameter.notation m1 , m2 refers to the two terms in the middle

portion of Eq. (2.13). If we recall Eq. (2.4) and use an In the simplest approximation (which we will call the
linear case), one considers only the linear terms in thealternative form of Gauss’ theorem we can also rewrite

m2 as a surface integral: expression for j(vs), that is, one expands the right side of
(2.16) and writes

m1 5
1

8f
E

­V
dS [n(r0 · H) 1 n 3 (r0 3 H)],

(2.14)
j 5 2

c2

4fe
L̃21vs (2.17)

m2 5
c

8fe
E

­V
dS n 3 vs . where L̃ is the penetration depth tensor. In the special

case of an isotropic superconductor, and only in this case,
the fields H, j, and vs all satisfy the vector Helmholtz

The terms m1 and m2 are of different order in « and the latter equation. But HTSCs are in general highly anisotropic,
is small, i.e., of O(«m0). This follows from the volume ex- layered structures with penetration depths much smaller
pression for m2 , as seen in Eq. (2.13): since H is confined to [7] in the layers (a 2 b planes) than in the direction perpen-
a ‘‘skin’’ layer of thickness l from the surface, we see at once dicular to them (along the c-axis), so that the isotropic
that m2 will be of order l times the applied field, that is, of limit does not apply. The components of L̃ in its diagonal
order «m0 , thus explicitly vanishing in the zero penetration representation are the square of the London penetration
limit. Alternatively, from Eq. (2.4) one sees that vs scales as depths, la , lb and lc and experimentally lc @ la , lb . In the
l and then the same result follows from Eq. (2.14). Specifi- numerical examples discussed here we will, for simplicity,
cally if the equations and boundary conditions require the neglect the comparatively small in-plane anisotropy and
field to decay exponentially far from the surface (up to poly- use the notation lab for the average of la and lb .
nomial corrections), then after decomposing the volume in- In the anisotropic case Eqs. (2.9) are still valid with « ex-
tegral into surface and normal components we have pressed in terms of an effective penetration depth, primarily

determined by whichever component li plays the dominant
role in the current decay. For example, for the geometry

m2 5
1

8f
E

S9
dS9 Ewmax

0
dw O

i
(Hmax)ie2(w/li)

(2.15)
considered in the next Section, the relevant quantity is the
penetration depth in the crystallographic a 2 b plane.

In the problem of interest here one must consider, in-
#

3
8f

S max(li(Hmax)i). stead of Eq. (2.17), the nonlinear terms arising from the
full relation (Eq. (2.16)) between j, and vs and substitute
this in the RHS of Eq. (2.6). After suitable assumptions

This expression is not proportional to the volume of V, V, for the FS and other physical quantities are introduced, this
as is the case for m0 , but rather to lS p O(«V) where S can be done by performing the FS integrals numerically, [4]
is the surface area of ­V. As a result m2 is O(«m0). or, in the low temperature limit, analytically [5, 6]. Inclu-

sion of these nonlinear terms is crucial, because, as men-
C. The Relation Between j and vs tioned, the physically important angular dependence of the

transverse magnetic moment arises precisely from theseWe now return to the pending question of the equation
nonlinear effects. The actual expressions for j(vs) used hererelating the fields j and vs needed to supplement (2.6). This
are taken from [6] and are quoted in Appendix A.is given by the usual two-fluid phenomenology [5, 6]:

III. ANALYTICAL CONSIDERATIONS: OBLATE
SPHEROIDAL GEOMETRY

j(vs) 5 2eNf E
FS

d2sn(s)vf F(vf · vs)

(2.16) Experimental samples [16] in which magnetic measure-
ments are performed are in the shape of a flat ‘‘disk’’

1 2 Ey

0
dz f(E(z) 1 vf · vs)G with rounded edges, and the axis of revolution along the

crystallographic c axis of the crystal. This is well approxi-
mated by taking V to be a flat ellipsoid of revolution (an
oblate spheroid). For an oblate spheroid it is possible towhere Nf is the total density of states at the Fermi level,

n(s) is the density of states at point s at the Fermi sur- find an analytic expression for the general form of the
potential F. Therefore, our ideas can be implemented inface (FS), normalized to unity, vf(s) is the s-dependent

Fermi velocity, f is the Fermi function, with E(z) 5 this geometry in terms of analytic expressions in R3\V.
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FIG. 1. Geometry considered here. The superconducting region V is an oblate ellipsoid of revolution. The x, y, and z directions are fixed in
space. The field is applied along the x axis, as indicated, while m' is along the y axis. The long and short semiaxes values are called A and C in
the text, respectively.

The potential F, for « 5 0, satisfies trivial Neumann In the definition we use [17], the oblate spheroidal coor-
dinates j, h, w, are related to Cartesian coordinates by theboundary conditions on ­V, and the solution contains a

single parameter which is simply related to mi . When the transformation
penetration depth is finite, the longitudinal moment does
change, but its correct value can in principle be determined x 5 f(1 1 j2)1/2(1 2 h2)1/2 cos w, (3.1a)
from the boundary conditions and the solution inside, ei-

y 5 f(1 1 j2)1/2(1 2 h2)1/2 sin w, (3.1b)ther through an iteration process as described in the next
Section, or, much more efficiently, through the perturba- z 5 f jh, (3.1c)
tion method we shall develop.

The fundamental equation (2.6) is not separable in sphe- where 0 # j , y, 21 # h # 1, 0 # w # 2f, and f is a focal
roidal coordinates. (Even the vector Helmholtz equation length scale factor (the coordinates j, h and w are dimen-
is not.) Still, it is desirable to employ these coordinates sionless). In Fig. 2 we show this coordinate system at a fixed
as ­V is then described by a single parameter and this

azimuthal angle w 5 08. One can obtain the relation betweensignificantly simplifies the process of numerically fulfilling
j, h, w, and Cartesian coordinates fixed to the crystal by re-the boundary conditions. The simple implementation and
placing w with w 1 C in (3.1). For example x9 5discretization of the boundary conditions on ­V yields
f(1 1 j2)1/2(1 2 h2)1/2 cos(w 1 C). The relation between unithigher accuracy where it is most needed, since boundary
vectors in these and Cartesian coordinates isgrid points lie on the interface.

We denote the major and minor semiaxes of the spheroid
by A and C respectively, and we have A @ C for actual ĵ 5

1
(j2 1 h2)1/2 (j(1 2 h2)1/2 cos wx̂

samples. We take (see Fig. 1) a coordinate system fixed to
the direction of the magnetic field, with its z-axis parallel 1 j(1 2 h2)1/2 sin wŷ 1 (1 1 j2)1/2hẑ), (3.2a)
to the c crystallographic direction of the superconductor
(and parallel to the C semiaxis of an ellipsoid). The field ĥ 5

21
(j2 1 h2)1/2 ((1 1 j2)1/2h cos wx̂

is applied along the x-axis, and we picture the experiment
as being performed by rotating the crystal about the 1 (1 1 j2)1/2h sin wŷ 2 j(1 2 h2)1/2ẑ), (3.2b)
z-axis and measuring the angular dependence of m' . As

ŵ 5 2sin wx̂ 1 cos wŷ. (3.2c)the crystal is rotated the axes x 2 y remain fixed in space,
and should not be confused with the coordinates, affixed
to the crystal structure, that we shall also use and denote We see that ĵ 5 n is the unit normal pointing outwards. In

the limit f R0, thespheroidal systemreduces tothesphericalby x9, y9. We call C the angle between axes x and x9.
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Since for j R y Qm
l (ij) R 0 ;m, l this fulfills the boundary

condition at infinity. The remaining terms in Eq. (3.4) are
due to the presence of the superconductor. The coefficients
A1

1i and A1
1' , for example, multiply terms that give rise to

magnetic fields associated with dipole moments along Ha

and perpendicular to it, respectively. In the limit « 5 0 Eq.
(3.4) simplifies [1] and the exact solution for F is

F 5 Fa 1 A1i fQ1
1(ij)P1

1(h) cos w. (3.6)

The parameter A1i ; A1
1i (for brevity we omit the upper in-

dex m 5 1) is determined from the boundary condition ­jF
5 0 at j 5 j0 , the surface of the spheroid:

A1i(« 5 0) 5
2Haj0

1 1 1/(1 1 j0) 2 j0 arctan(1/j0)
. (3.7)

A1i is always proportional to mi , the longitudinal magnetic
FIG. 2. The relation between oblate spheroidal (j, h, w) and Cartesian moment. For an ellipsoid, we show in Appendix A that

coordinates is illustrated at a fixed azimuthal angle w 5 08. The surfaces
j 5 constant and oblate ellipsoids of revolution around the z-axis with mi 5 Sd f 3A1i . (3.8)
semiaxes A 5 f(1 1 j2)1/2, C 5 fj. The surfaces uhu 5 constant are one-
sheeted hyperboloids of revolution. The surfaces w 5 constant are planes
through the z-axis making an angle w with the x 2 z plane. It is instructive to verify that in the linear case the solution

on V leads to vanishing m' . From the linear relation be-
tween j and vs in Eq. (2.17) and the anisotropy in L̃ as dis-
cussed in IIC, the azimuthal dependence of vs and j is identi-coordinate system. For f finite, the surface j 5 const be-
cal. We can find the w-dependence of the magnetic momentcomes spherical as j R y:
from Eq. (2.8) and the appropriate element of integration
given by Eq. (B6). The w variable is separable. Conse-fj R r, h R cos u, as j R y. (3.3)
quently, thee2f

0 dw integrationcanbe performedanalytically
and yields m' 5 0. Thus, any transverse component arisesIn the same limit ĵ R r̂ and ĥ R 2û, where r and u are spheri-
from the nonlinear terms. Their origin can be seen as fol-cal coordinates. Various quantities in oblate spheroidal co-
lows: the superfluid velocity field has, in the presence of non-ordinates are given in Appendix B.
linearities, an azimuthal dependence different from that inTo construct the general form of the solution for the fields
the linear case. This implies that the w variable is no longerin the region R3\V we employ an electrostatic analogy [1].
separable. The nonlinear terms in (A2) lead to higher har-The current distribution is localized within V and the mag-
monics for the w dependence of vs on V. Then, it followsnetic potential in the exterior region can be written as an
from Eq. (2.4) that there is a small, but nonvanishing trans-expansion in the appropriate set of orthogonal functions
verse field, H' , with a different azimuthal dependence fromwhich in this case are the spheroidal harmonics [17, 18] (a
that in the linear case, which can contribute to m' . There-generalization of spherical harmonics), characterized by an-
fore the nonlinear response of a superconductor is responsi-gular and azimuthal indices l and m. Thus we write
ble forH' and, a aresult, for m' . InR3\V, the part ofH' from
which m' arises can be described by a transverse dipole, i.e.

F 5 Fa 1 Oy
l50

Ol

m50
(Am

l cos(mw)

(3.4)

a potential of the form of the last term in Eq. (3.6), rotated
by 908

1 Am
l' sin(mw)) fQm

l (ij))Pm
l (h) j $ j0 ,

F' 5 A1' fQ1
1(ij)P1

1(h) sin w (3.9)
where Pm

l and Qm
l are the associated Legendre functions of

where in full analogy to the longitudinal case in Eq. (3.8)the first and second kind respectively, and Fa is the potential
due to the applied field. The condition that

m' 5 Sd f 3A1' . (3.10)2=F R Hax̂ when j R y yields

Fa 5 2Ha fP1
1(ij)P1

1(h) cos w. (3.5) The potential F' is the only contribution to m' from the
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general expression given by Eq. (3.4). This term is small, A1' for introducing the perturbation method obviating the
need for it. The important question here is that of calculat-! A1i (recall the discussion about m'/mi from subsection

IIB) and does not exist when the penetration depths vanish, ing the magnetic dipole moment. In other boundary value
problems to which our method can be extended, one mustsince the nonlinear effects are absent unless the field can

penetrate the sample. Higher order multipole terms (l . 1), similarly determine the lowest nonvanishing multipole mo-
ments.as in (3.4) do not contribute to the magnetic moment as can

be seen from symmetryconsiderations or by explicit calcula- To obtain a solution to Eq. (2.6) in the general case
when the relation between j and vs is nonlinear, given bytion using the orthogonality of Pm

l (h).
It is useful to recall explicitly the connection of the Am

l Eq. (2.16) (see also (A2)), one can in principle use the
following iteration method. As a first step, one can solvewith the coefficients in a standard multipole expansion. In

the spherical limit given byEq. (3.3) thesecoefficients repre- these equations in V with boundary conditions on ­V corre-
sponding to the limit « 5 0. That can be done by settingsent ordinary spherical multipoles. For large enough dis-

tances from V the asymptotic form of the l 5 1 term is always A1i 5 A1i(« 5 0) (and all the other Am
li,' ; 0), requiring

continuity of the components Hh and Hw at j 5 j0 , and alsoa pure dipole. The spherical limit of Eq. (3.6) is
enforcing the condition on ­V, j · n 5 0. These boundary
conditions for the magnetic field are not exactly the desiredF 5 2Har sin u cos w

(3.11) ones, since continuity of the j component cannot be de-
manded because the external field has been specified so1

m0

r2 sin u cos w 5 2Hax 1
m0x
r3 ,

that its j component vanishes at the boundary. The mag-
netic field outside the sample is simply obtained from Eq.
(2.2a) with F given by (3.6). Inside one employs Eq. (2.4)with
to get the magnetic field from vs .

From the numerical solution in V, obtained using them0 5 2AsHaa3 (3.12)
overrelaxation method discussed in [19, 20] we can com-
pute the magnetic moment by using (2.8), and the fieldswhere a is the sphere radius and we see once more that A1i(«
from the above approximate solution. The computed value,

5 0) is proportional to m0 .
m(1), the superscript (1) indicating the order of iteration,For finite j (not necessarily in the spherical limit), the
will be in general different from m0x̂: the computed mag-magnetic moment of a spheroid is again obtained only from
netic moment is not the input value m0 . Hence, the actualterms with l 5 1 in the Eq. (3.4). The l 5 1 terms, however,
problem has not been solved: the solution is not self-consis-have spheroidal symmetry and their radial and angular de-
tent. One can then imagine obtaining the correct solutionpendence is not identical to 1/r2 sin u as for a pure dipole in
from the following iteration process: Denote by (A1i)(1),Eq. (3.11), they have an admixture of higher spherical
(A1')(1) the values of these quantities obtained from Eqs.multipoles.
(3.8), Eq. (3.10) and the appropriate components of m(1).At finite L̃ the value for A1i (proportional to mi from (3.8))
Then use (A1i)(1), (A1')(1) in the computation of the exteriorwill beslightly different from A1i(« 50), reflectingthe differ-
field, and use again this exterior field to solve Eq. (2.6),ence between mi and m0 given by Eq. (2.9a). The potential
repeating the procedure described in the previous para-will also acquire additional terms as seen in Eq. (3.4). The
graph. The second iteration yields, e.g., (A1i)(2), (A1')(2)

longitudinal terms with l $ 2 and all of the transverse terms
which in general would differ from (A1i)(1) and (A1')(1).vanish at L̃ 5 0, that is, they are of higher order in «. They
Repeated iterations would give sequences (A1i)(1), (A1i)(2),also vanish in the spherical case but only if L̃ is isotropic and
(A1i)(3), ... and (A1')(1), (A1')(2), (A1')(3), ... converging tothe relation j(vs) is purely linear. If, in addition, one includes
the desired values of A1i , A1' , when the moment generatedthe nonlinear terms in j(vs), so that the full relation (3.4)
by the computed currents equals the input value. At thatapplies, then the transverse dipole term appears even in a
point, the magnetic moment will be known. The higherspherical geometry.
order As will not necessarily be known, but they do not
contribute to m. In practice such a procedure could be

IV. COMPUTATION OF THE MAGNETIC MOMENT implemented first for the larger longitudinal component
and then for the smaller transverse component.

A. General Considerations on Iteration Procedure

The considerations from the previous section point to a
B. Perturbation Method To Compute m

method for obtaining a complete solution for m. This
method, although it should work in principle, would na- The procedure described in IVA may be a lengthy and

expensive process and it is for this reason that we develop,ively lead to the need for an iteration which is in practice
too cumbersome, and which we discuss here as motivation in this subsection, a procedure to bypass it. We compute
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mi (accurate to first order in «) in a single iteration step, of multipole expansion with unknown coefficients, m1(Fa)
remains the same. The only difference in computing m1 isthat is, a single pass through solving the equations inside

the body as described above. that the coefficients in the terms arising from Fr are now
proportional to the correct, but still to be determined,The surface integral (2.13), rather than (2.8) is the ex-

pression for m that is convenient for our purpose since as value of the magnetic moment m, slightly changed from
the « 5 0 case. All the remaining higher multipolesseen in subsection IIB, it divides m into two terms, m1 and

m2 , of different order in «. (l . 1) of F, as mentioned in III, do not contribute to m
and we haveIt follows from the considerations of Section II, and it

is the basis of our perturbation method, that to obtain m
correctly to O(«m0) it is sufficient to compute m2 from m1(Fr) 5 m(1 2 p). (4.4)
fields (i.e., H or vs) accurate only to zeroth order. This is,
as explained there, because a factor of « explicitly scales Adding this to m1(Fa) we get
out of the expression for m2 . Now, since the internal fields
obtained by solving Eq. (2.6) at the first iteration level m1 5 m 2 p(m 2 m0). (4.5)
(as described in the previous subsection, i.e., with « 5 0
boundary conditions) are already accurate to the zeroth We can express Eq. (2.14) using (4.5) as
order, one iteration is sufficient to evalute m2 at desired
accuracy. The problem reduces, therefore, to that of cor- m 5 m 2 p(m 2 m0) 1 m2 , (4.6)
rectly including the contribution m1 to first order in «.

To illustrate how this is done, let us recall the general so that we have the solution for m correct to O(«),
form of the analytic solution for the spheroid. As seen in
Section III (Eq. (3.4)) it has the form of a multipole expan-

m 5 m0 1
1
p

m2 P m0 1
1
p

m2 , (4.7)sion with undetermined coefficients. Since the exact field
H is continuous on ­V we can insert this general form in
the expression (2.13) for m1 . Only the l 5 1 terms, by

which determines all components of m.virtue of (3.8) and (3.10), contribute to m, so that m1 can
We illustrate this method using the textbook examplebe evaluated in terms of the unknown m. Thus we have

of the isotropic, linear superconducting sphere in a uniform
applied field Ha , along the x-axis. In this case all the fieldsm 5 m1(m) 1 m2 1 O(«2m0), (4.1)
in V satisfy the vector Helmholtz equation

where we emphasize that m1 depends on the unknown
l 5 1 parameters, and where we introduce the overbar =2F 5

1
l2 F, (4.8)

notation to denote quantities evaluated from the zero pen-
etration limit external fields. Since terms of O(«2m0) can

where F can be H, j, vs . On the entire R3\V region, Fr hasbe neglected, it is possible to interchange m2 and m2 in the
a pure dipole form and H is given by taking the gradientvarious expressions and we have done so. Expression (4.1)
of Eq. (3.11)is an equation for the unknown m.

To solve it in practice, consider the general form of F,
Eq. (3.4) which indicates that F (or equivalently H) can

Hr 5 SHa 1
2m
r3 D sin u cos w, (4.9a)

be separated into two parts: F 5 Fa 1 Fr , due to the
applied field and to the presence of the superconductor,
respectively. We can then write the contribution of these Hu 5 SHa 2

m
r3D cos u cos w, (4.9b)

parts as

m1(m) 5 m1(Fa) 1 m1(Fr). (4.2) Hw 5 S2Ha 1
m
r3D sin w, (4.9c)

We now define p by m1(Fa) ; pm0 . Since m0 and m1(Fa)
are now known, one can determine the constant p which where r, u, f are spherical coordinates, and m a parameter
depends on the shape of V, i.e. on the eccentricity. In the to be determined. This is the general solution for any «
limit « 5 0, m2 5 0 and from Eq. (4.2) we have the identity (not just 0), in the field outside; there is only a dipole term

in addition to that due to applied field. However, even
m0 5 m1 5 pm0 1 m0(1 2 p). (4.3) if there were higher spherical multipoles in the general

solution, that would not affect the evaluation of m1 , since
their contribution to m would vanish identically by symme-For « ? 0, when the solution for F and H is given in terms
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try. In the limit where the current does not penetrate into
mi 5 m0 1

1
p(j0)

m2i , (4.14a)the superconductor, the magnetic moment is given by
m0 5 2Asa3Ha (recall (3.12)). Performing the elementary
integral for m1 in Eq. (2.14) we obtain m' 5

1
p(j0)

m2' , (4.14b)

m1 5 Adm0 1 Sdm 5 m 2 Ad(m 2 m0), (4.10) with

p(j) 5 Af(2 1 j2 2 (1 1 j2)j arctan(1/j)), (4.15)Comparing with (4.5) we identify p 5 Ad in this case and
using Eq. (4.7)

p(j) is evaluated at the surface of the ellipsoid (j 5 j0).
As shown in Appendix B1, j0 is related to the eccentricity

m 5 m0 1 3m2 . (4.11) of the spheroid. In the spherical limit when j R y we
recover the sperical result, p 5 Ad, obtained earlier. Another
interesting limit is that of a flat disk (j R 0) whereTo determine the unknown m to O(«) it remains to
p(j) 5 As. As discussed previously, m' R 0 for L̃ R 0.compute m2 and substitute it in (4.11). Using the eval-

The above method applies not only to oblate spheroids,uation for m2 , with the boundary conditions taken in the
but to all geometries for which a general solution for F in« 5 0, from Appendix C we get the perturbation result
R3\V as an expansion in terms of orthogonal functions,for m
(only one of them being dipolar at large distances) can be
written. Furthermore, the method can be extended, with

m 5 m0(1 2 3«), (4.12) one additional assumption, to a situation where the shape
of V precludes an analytic solution for the outside fields
even at « 5 0, and only a numerical solution, F, in thatwhere « 5 l/a. If we compare this to the expression for
limit is available. We assume that, as in the analytic cases,mi given by Eq. (2.9a) we can read off ai 5 3. This is the
the coordinate dependence of the terms in F which contrib-correct value for a sphere to this order, as given in text-
ute to the dipole m remains the same, up to a multiplicativebooks [9, 12]. This, using the perturbation method with
constant, for « 5 0 and « ? 0. This assumption requiresapproximate boundary conditions in the evaluation of m2 ,
that the shape of V produces no singularities in the fields.we have obtained the correct value for m to first order in
This might be a sufficient condition, but we know of no«. It is also instructive to calculate m analytically, with
rigorous proof.internal fields evaluated from (2.6) and « 5 0 boundary

The magnetic field at large distances, r @ d, has the formconditions, Eq. (2.13). The calculation would yield m cor-
given in Eq. (3.11), m0 is the magnetic moment for V, andrect only to O(m0); the value of ai is not correct; one gets
all the higher multipoles can be neglected. We can again,ai 5 2 instead of ai 5 3.
as above (4.2) separate F 5 Fa 1 Fr , where Fa is theWe return now to the oblate spheroid. In V we allow
applied field contribution. At r @ d, Fr is of dipolar formthe full nonlinear relation between j and vs , given by Eq.
and the value of m0 can be in principle numerically ex-(A2). The magnetic field in R3\V that contributes to the
tracted either by using the left part of (4.3) or from thecomputation of m is given in Appendix B3. We aim to
asymptotic form. For « ? 0 the potential F has asymptoti-obtain the appropriate perturbation equation (4.7) relating
cally the same dipolar form as F, but the unknown dipolarthe unknown moment to m2 , the term computed from the
coefficient m differs from m0x̂. One can then proceed asnumerical solution in V (using the first step in the iteration
in the analytic case. Consider as an illustration, the compu-procedure, described in the previous subsection). To calcu-
tation of mi to O(«). We can implement the method bylate the magnetic moment, we proceed as with the sphere
writing the potential at « ? 0 in the formexample. We first evaluate the term m1 from Eq. (2.14),

recalling Eqs. (3.7), (3.8), (3.10) and n 5 ĵ. The integral,
evaluated in spheroidal coordinates using (B6), is elemen-

F(« ? 0) 5 Fa 1
mi

m0
(Fr) 1 Fnd , (4.16)

tary and we give only the result. The corresponding pertur-
bation equation for m is, from (4.7)

where Fnd is a possible contribution to higher order
multipoles only. Eq. (4.16) merely expresses our assump-

m 5 m0 1
1

p(j0)
m2 , (4.13) tions in mathematical form. It can be better understood

by recalling the discussion in Section III (and above in this
Section) in particular the difference between A1i(« 5 0)
and A1i .or, writing its components explicitly
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Since m0 is known, one can use Fa to evaluate m1(Fa) V 5
vs

vc
, H 5

H
H0

, J 5
cH0

4flab
j, (5.1)(see (4.2)) and hence the quantity p through m1(Fa) 5

pm0 . From the distribution of vs on ­V we compute m2

and Eq. (4.7) gives the desired mi . where vc 5 D0/vf is the critical velocity (discussed in Appen-We see therefore that our method has considerable gen-
dix A), D0 is the amplitude of the order parameter, definederality and our results can be summarized in terms of the
in Appendix A, and we have introduced a characteristicfollowing theorem, the validity of which follows from the
magnetic field H0 asanalysis in this section and the decomposition of m in IIB.

THEOREM 1. Let us assume that:
H0 5

f0

f2labjab
, (5.2)

(a) There exist a small parameter « ! 1 and we consider
Eq. (2.6) in V that allows a sufficiently accurate solu-

where f0 5 fc"/e is the flux quantum and jab 5 vf/(fD0)tion in R3\V for (2.2b) with trivial Neumann bound-
is the in-plane superconducting coherence length (not to beary conditions on ­V, and at infinity 2=F 5 Ha ,
confused with j, the spheroidal coordinate). The definitionwhich satisfies the assumption discussed in connec-
(5.2) involves precisely the same numerical factors as thattion with (4.16).
used in [4, 6]. The required equations are easily rewritten in(b) H in the interior of V decreases with the distance
terms of these quantities. Equation (2.6), using the relationfrom ­V not slower than exponential dependence
between j and vs given by (A2), then becomesgiven by a characteristic length ! typical size of V.

Then the following statements are true: (= 3 = 3 V)x9,y9 5 2Vx9,y9(1 2 t1uVx9,y9u)

1. It is possible to write m 5 m1 1 m2 as given by (2.14) ; 2Vx9,y9 1 Nx9,y9 , (5.3a)
where m1 is O(m0) and m2 is O(«m0).

2. To obtain m from Eq. (4.7) accurate to O(«m0) it is (d= 3 = 3 V)z 5 2Vz S1 2 t2
V2

x9 1 V2
y9

uVx9u 1 uVy9u
D

sufficient to calculate the leading contribution to the
term m2 , the error in determining m being of O(«2m0). ; 2Vz 1 Nz , (5.3b)

This perturbation method can be applied outside the
where d 5 (lc/lab)2 5 mc/mab and we define Nx9 , Ny9 , Nzfield of superconductivity. For example, it is well known [1]
as the terms nonlinear in the velocity. The equations arethat an ordinary conductor in a high frequency, harmonic
written in terms of the primed coordinates and the deriva-applied magnetic field (the frequency should satisfy quasi-
tives are with respect to the dimensionless length measuredstatic condition g ! c/d) behaves like a superconductor
in units of lab .in a constant field. It is then possible to identify the small

Before discretizing Eqs. (5.3) we transform them to ob-parameter, « ! 1 as the ratio of skin depth, ds , the typical
late spheroidal coordinates. We start by writing these equa-length scale for field penetration in the conductor and the
tions in the unprimed (x, y, z) coordinate system where,characteristic geometrical dimension, d. The computation
we recall, the x-axis lies along the applied field. The linearof the magnetic field distribution is then achieved by solv-
part of the equations looks identical in primed or un-ing the corresponding steady-state problem for a supercon-
primed coordinates and we only need to carefullyductor of the same shape, and m can be obtained using
transform Nx9,y9,z to Nx , Ny and Nz terms nonlinear inEq. (4.7).
the velocity along the unit vectors x̂, ŷ, and ẑ, respectively.
We have

V. NUMERICAL CONSIDERATIONS

Nx 5 t1(Vx9uVx9u cos C 1 Vy9uVy9u sin C), (5.4a)A. Dimensionless Form of Equations on V

Ny 5 2t1(Vx9uVx9u sin C 2 Vy9uVy9u cos C), (5.4b)In performing the calculations and describing the results,
it is convenient to introduce dimensionless quantities. We
recall that V is a flat spheroid and with the magnetic field Nz 5 t2Vz

V2
x9 1 V2

y9

uVx9u 1 uVy9u
, (5.4c)

applied in the x 2 y (a 2 b) plane, most of the current
will flow parallel to the a 2 b plane and its decay will be
governed by lab . It is therefore convenient to measure the where Vx9 5 Vx cos C 2 Vy sin C, Vy9 5 Vx sin C 1

Vy cos C and Vz9 5 Vz . Or, if we express the componentslength in the units of lab . We then define dimensionless
fields V, J, and H : of velocity in spheroidal coordinates
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Vx9 5 cos(w 1 C)(aVj 1 dVh) 2 sin(w 1 C)Vw , (5.5a) = 3 V 5 H uj5j0
, (5.10)

Vy9 5 sin(w 1 C)(aVj 1 dVh) 1 cos(w 1 C)Vw , (5.5b)
where the right hand side is the external dimensionless field

Vz 5 2dVj 1 aVh , (5.5c) at the surface of the ellipsoid. The remaining boundary
condition J · n ; Jj 5 0 on ­V is generally nonlinear and
readily enforced by observing that the RHS of Eq. (5.9a)where a 5 j(1 2 h2)1/2/(j2 1 h2) and d 5 2(1 1 j2)1/2h/
is YJj .(j2 1 h2). We can now write the nonlinear part (from

equation (2.6) and (5.4)) along each spheroidal coordinate.
B. Computational Grid and Discrete VariablesFor example, along ĵ we get

The implementation of the perturbation method from
Nj 5 a(cos wNx 1 sin wNy) 2 dNz . (5.6) Section IV is not restricted to a particular algorithm for

solving the relevant equations in V. In the remaining part
of this section we outline as an example one suitable algo-Nx,y,z are entirely expressed in terms of spheroidal compo-
rithm using a modification of the Gauss–Seidel relaxationnents as shown above. In an analogous way we can obtain
method. We first discuss the discretization of the completethe remaining nonlinear parts Nh,w .
nonlinear, three-dimensional (3D) problem. It is then pos-Using Eqs. (3.2) we transform the inverse of the penetra-
sible to consider, as a special case, the two-variable discreti-tion depth tensor given in Cartesian coordinates by a diago-
zation of the linear problem were the w dependence isnal tensor with components (l22

ab , l22
ab , l22

c ), (recall Eq.
known analytically. The numerical solution to such a prob-(2.17)) to spheroidal coordinates:
lem is then used as the initial guess for the relaxation
method of the complete 3D problem.

Eqs. (5.9) or their counterparts (2.6) and (A2), have
definite parity: vx , vy are even and vz is odd in z. It isL̃21 5 l22

ab 3
r1 r2 0

r2 r3 0

0 0 1
4 therefore sufficient to consider only the upper, positive z

(V1), or the lower, negative z (V2) half of V and extend
by parity the obtained solution to the whole V. The compu-
tational domain G is obtained by parameterizing the physi-where r1,2,3 are defined by
cal domain V2 using oblate spheroidal coordinates
(j, h, w). We consider a uniform grid on G with mesh

r1 5
j2(1 2 h2) 1 d21(1 1 j2)h2

j2 1 h2 , (5.8a) widths hj , hh and hw . The choice of a grid uniformly spaced
in variable h, generates denser grid points corresponding
to the part of V2 (the h P 0 region) with higher curvaturer2 5 2

(1 2 d21)j(1 1 j2)1/2h(1 2 h2)1/2

j2 1 h2 , (5.8b)
and greater field variation. An arbitrary grid point on G
is given by (ji , hj , wk) or just (i, j, k) for brevity

r3 5
d21j2(1 2 h2) 1 (1 1 j2)h2

j2 1 h2 . (5.8c)
xi, j,k 5 jiĵ 1 hjĥ 1 wkŵ, (5.11)

The resulting form of the dimensionless equations in sphe- where the grid coordinates are given by
roidal coordinates (which we will solve numerically) is

ji 5 ihj , hj 5 21 1 (As 1 j)hh , wk 5 2f 1 khw , (5.12)
f 2(= 3 = 3 V)j 5 2f 2((r1Vj 1 r2Vh) 2 Nj), (5.9a)

and the indices run through values i 5 0, ..., nj , j 5 0, ...,f 2(= 3 = 3 V)h 5 2f 2((r2Vj 1 r3Vh) 2 Nh), (5.9b)
nh and k 5 0, ..., nw . Mesh widths are given by hj 5 j0/nj ,

f 2(= 3 = 3 V)w 5 2f 2(Vw 2 Nw). (5.9c) hh 5 2/(2nh 1 1) and hw 5 2f/nw .
The discrete variables are denoted by the same symbol

as their continuous counterparts, for example, Vj;i, j,k repre-Expressions for the differential operator f 2= 3 = 3 V
in spheroidal coordinates are included in Appendix B2. sents Vj at the grid point (ji , hj , wk). The discretized ap-

proximations of derivatives used have second order accu-Equations (5.9) have to supplemented with appropriate
boundary conditions, as discussed in Section II. The bound- racy in the mesh widths. We will use the letter D to

represent the discretized approximation, upper indices 0,ary condition at infinity is satisfied by the use of the analytic
solution for R3\V. Since lab ! C we can put V ; 0 at 1, 2 denote the central, forward and, backward approxi-

mation respectively, and the lower indices denote the cor-j 5 0, as all the fields vanish deep inside the sample.
Continuity of the H field on ­V is achieved through responding variables of differentiation. For example,
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D01
jh denotes the mixed differentiation with respect to j derivatives with respect to h, D1

h is obtained analogous to
Eq. (5.14) by replacing hh with 2hh and the indices j 2 1,and h, where the central difference formula is used in j

and the forward difference formula in h variable. For the j 2 2 by j 1 1 and j 1 2 respectively. The second derivative
D11

hh is taken as:interior grid points we only use the central difference for-
mula for all the derivatives and omit the upper indices.
We also use central differences for derivatives at all the

D11
hh Fi, j,k 5

1
h2

h

(2Fi, j13,k 1 4Fi, j12,k 2 5Fi, j11,k 1 2Fi, j,k),grid points on ­G that do not require introduction of ficti-
tious grid points Ó G. For example, in computing D0

j at (5.15)
(nj , j, k) we would need to use a grid point at i 5 nj 1
1 Ó G, we avoid that by using a backward difference D2

j where F represents any component of a vector field. We
at (nj , j, k). Similarly we employ forward differences can obtain similar formulae for D01

jh and D10
hw . At the surface

were necessary. boundary (i, j, k 5 0), where w 5 2f, we proceed in
an analogous way, the derivatives with respect to w are

C. Implementation of Boundary Conditions and expressed with forward differences. The other part of ­G
Equations on G with w 5 const, i.e., (i, j, k 5 nw) corresponds to the same

boundary surface (w 5 2f) and we can impose the simpleThe grid boundary, ­G, consists of six two-dimensional
periodic boundary conditionsplanar surfaces with grid points described by (0, j, k),

(nj , j, k), (i, 0, k), (i, nh , k), (i, j, 0), and (i, j, nw).
Fi, j,nw

5 Fi, j,0 . (5.16)On the surface j 5 0, (0, j, k), which corresponds to the
equatorial (z 5 0) disk in V with radius equal to the focal
length f, we impose trivial Dirichlet boundary conditions. On the remaining part of ­G, the surface (i 5 nj , j, k) at
As we have discussed in Section II, this follows from the j 5 j0 , we impose continuity (as discussed in section IV)
requirement that deep inside V all fields should vanish. of the h and w components of H . From Eq. (5.10) we
This eliminates possible difficulties from the singularities of can express Vh;i, j,k and Vw;i, j,k respectively to obtain their
the various differential operators at j 5 0. Any remaining updated values in each step of the relaxation procedure.
singularities of the equations on G would come from points The equation for Vj;i, j,k is obtained from J · n 5 0 by setting
with coordinates h 5 0 and h 5 61. On the surface the RHS of Eq. (5.9a) to zero
h 5 0 (i, j 5 nh , k), corresponding to part of the z 5 0
plane, we have from the known parity of V:

r1Vj 1 r2Vh 2 Nj 5 0. (5.17)

Vj,w 5 0uh50 , (5.13a)
In the relaxation procedure, the nonlinear term Nj is in-
cluded using Picard’s method [21], the value of Nj is taken­hVh 5 0uh50 . (5.13b)
from the previous iteration. If we denote by an upper index
n the number of the iteration (in the relaxation procedure),We implement Eq. (5.13b) as D2

h Vh;i, j5nh,k 5 0
the nonlinear boundary condition can be implemented as

D2
h Vh;i, j,k 5

1
2hh

(3Vh;i, j,k 2 4Vh;i, j21,k 1 Vh;i, j22,k), (5.14)
Vn11

j 5 2
r2

r1
Vn11

h 1
1
r1

Nn
j . (5.18)

and in the iterative solution we write down explicitly Vh;i, j,k The nonlinear and nonanalytic terms can be simply in-from this expression. The remaining region on G that could
cluded by using Picard’s method. In addition to the nonlin-result in singularities of the differential operators is at
ear boundary condition (5.18) we shall also use Picard’sh 5 21, which corresponds to a line through the ‘‘south
method to include the nonlinearities stemming from Eq.pole’’ and the origin of V, i.e., a segment starting at the
(5.9).origin and ending at a point with Cartesian coordinates

For the grid points Ó ­G it is possible to use central(0, 0, z). The choice of grid given in Eq. (5.12) excludes
differences. In the LHS of Eq. (5.9), given explicitly inthis segment, the closest point on the grid in hh/2 away.
Appendix C, we replace each partial derivative by theThe numerical solution for V in the vicinity of h 5 21 is
appropriate central difference, D.well behaved (as it is for the linearized equations in the

geometries that permit an analytic solution in V). It is
D. Modified Gauss-Seidel Relaxation

therefore possible to extrapolate the obtained numerical
solution to h 5 21. At the grid boundary surface The solution to the nonlinear, 3D problem using the

relaxation method consists of two steps. The first is ob-(i, j 5 0, k) we use the forward difference formula for the
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taining a good initial guess using the numerical solution number of grid points. To test the convergence of the
relaxation algorithm, we tried the very poor initial guessto the linear equations given by Eqs. (2.6) and (2.17). The

w dependence is then known and it can be separated out. of zero fields everywhere on G. The boundary conditions
were taken in the « 5 0 limit, that is A1i 5 A1i(« 5 0) fromThe method of successive overrelaxation can be applied

to the resulting two-variable problem in the coordinates j Eq. (3.7). The overrelaxation parameter was g 5 1.8 and
after 1000 relaxation steps (43 sec of CPU time) we ob-and h. The boundary conditions on the continuity of H ,

as discussed in the previous subsection, are implemented: tained m using Eq. (2.14) and the perturbation method
with Eq. (4.11). In the term m2 the distribution of Vh , Vwthe magnetic field outside is taken in the « 5 0 limit

(A1i 5 A1i(0)). In the relaxation procedure each component at j 5 j0 (from the numerical solution on G) was extended
by parity to the entire ­V and supplemented with theof V is expressed in terms of the corresponding component

of the linearized (Nj,h,w 5 0), two-dimensional form of Eq. known w dependence. Thus, integration over w was per-
formed analytically and that with respect to h, numerically.(5.9) so that the resulting matrix equation is diagonally

dominant [22]. For a detailed discussion of the method see The extracted constant (from Eq. (4.11)) was ai 5 3.1,
within 3% of the analytically obtained value of 3 from Eq.[19, 20]. The numerical solution, the distribution of

V(ji , hj), is supplemented with the known w dependence (4.12). The use of a conventional procedure to compute
m would require repeating the whole iteration procedureand mi is calculated using the perturbation method.

The second part of the algorithm is a modification of to get an improved value for ai , as we have in principle
described in IVB.the Gauss–Seidel (the overrelaxation parameter, g 5 1)

method for the full 3D problem. The previously obtained We also verified that the numerical solution for the full
three-variable problem in this geometry and exact bound-solution for the linearized equations is the initial guess for

Vi, j,k , and the value mi i.e., the corresponding A1i , is used ary conditions, has the correct form. The angular depen-
dence of the solution was Jh , Vn Y h sin w and Jw , Vw Yin the expression for the H outside. If we denote the

linear part of Eq. (5.9) as L(V) and the nonlinear part as (1 2 h2)1/2 cos w which in the spherical limit h R cos u
corresponds to the analytical solution for a sphere. TheN(V) the relaxation procedure can be described symboli-

cally as: numerical solution, for the range of grids considered, was
accurate between three and four significant figures for ev-
ery grid point where J(V) was numerically significant.L(V(n11)) 5 N(V(n)), n 5 1, 2, ... (5.19)

For the physical results related to the nonlinear response
of an oblate spheroid we refer to [6], and discuss hereAfter completion of each relaxation step we update the
only some aspects not covered there, that illustrate theold values, V(n), at each grid point as N(V(n)) 5 N(V(n11)).
numerics. Analysis of the transverse magnetic momentAs done with the boundary condition from Eq. (5.18) we
shows that [6]use Picard’s method to include the nonlinear terms which

are also nondifferentiable. The numerical solution for the
linearized equations is a very good initial guess for the

m' Y
Ha

H0
HaF(C), (6.1)full problem, since the nonlinear terms are small, which

compensates for the relatively slow convergence of Pi-
card’s method.

from which we infer that a' Y Ha/H0F(C), where F(C)
is the angular dependence on C which has [6] period f/2.VI. NUMERICAL TESTS
We will give results for C 5 f/8, approximately the maxi-
mum of F. The longitudinal moment, due to field penetra-For our computations we used the Cray C90 of the Min-

nesota Supercomputer Institute. We first tested the com- tion, differs from m0 and it can be characterized, as we
have shown earlier, by the parameter ai . This parameterputer code on the example of the linear, isotropic sphere

with applied field along the x axis, where the analytic solu- includes contributions from the linear part of j(V), inde-
pendent of Ha , and from the nonlinear part, dependenttion is known. The spherical geometry was realized as the

spherical limit of the spheroid. We used j0 5 1000 and both on Ha/H0 and on C.
We consider an oblate spheroid with j0 5 0.144338f 5 0.1, so that the radius of sphere was a R fj0 5 100 (in

units of l), the corresponding « 5 l/a 5 1022 and the ratio (A/C 5 7) at Ha/H0 5 0.1 (in the experimentally relevant
range) and C 5 f/8. For f 5 1000 (in units of lab , definedof the spheroidal semi-axes is A/C 5 100.005/100. We used

the two-variable version of the code in the variables j and in IIC and VA) we have used nj 5 550, nh 5 50 and
nw 5 30. The results for ai and a' are given as a functionh. The computational grid spanned a spherical shell of

thickness 7 (l), and because fields decay exponentially of the material parameter d 5 (lc/lab)2 in Table I. For
fixed j0 (fixed shape), we have considered various sizes ofaway from the surface, we imposed trivial Dirichlet condi-

tions at j 5 930. We used nj 5 200 and nh 5 50 for the spheroid (different f ), changing « ; lab/C ! 1 by a factor
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TABLE I

The Parameters ai , a' Which Determine the Magnetic Moment
for « ? 0 (see Eq. (2.9), Given as Functions of the Material
Parameter d 5 (lc/lab)2, Computed for an Oblate Spheroid with
A/C 5 7 at a Field Ha/H0 5 0.1

d 5 (lc/lab)2 ai 103 a'

16 1.9 3.8
25 2.1 3.6
36 2.2 3.3
50 2.3 3.1

of four (at fixed lab , lc) and verified that ai, a' are size
FIG. 4. Illustration of the nonlinear effects on the magnetic field.independent within numerical accuracy.

The solid line is the component H h(j, h 5 20.693, w 5 08), which isIn the next two figures we display some of the numerical
very predominantly ‘‘linear,’’ normalized to its maximum value, whileresults for the field distributions calculated under the same
the dashed line is H w(j, h 5 20.693, w 5 08), which arises solely from

conditions and with the same parameter values as in the nonlinear effects, also normalized to its own, much smaller, maximum
previous paragraph. In Fig. 3, we show results for the value. Both components are plotted as functions of D ; j0 2 j. The non-

exponential behavior of the dashed line is a signature of its nonlinearcurrent at surface of the spheroid, (j 5 j0). The compo-
character. All parameters used are as in the previous figure.nents Jj,h(j0 , h, w), at the fixed azimuthal angle w 5 488,

are shown as functions of h. For comparison we recall
there also the corresponding angular behavior for a sphere,
as given earlier in this Section. In Fig. 4 we show some H w , vanishes in the linear case (at w 5 08), and it arises
results for the magnetic field as it penetrates into the sam- solely from the nonlinear effects. This behavior is far from
ple. We plot the two components H h,w(j, h, w) as functions being an exponential; its derivative changes sign, for the
of j0 2 j at constant w 5 08, h 5 20.693, (see Fig. 2). The same physical reasons as the nonlinear current does, as
plot illustrates the difference between the components of discussed in [6].
the field arising purely from the linear equations and those
which are due to the nonlinear effects. The component VII. CONCLUSIONS AND FUTURE WORK
H h (at w 5 08) is very predominantly ‘‘linear,’’ and displays
exponential-like behavior. The other component plotted, In this paper, as the main result, we have presented a

perturbation method to compute the magnetic moment
of a bulk nonlinear and anisotropic superconductor. This
method could be implemented in conjunction with various
algorithms for solving boundary value problems in electro-
dynamics. Suitable generalizations would certainly in-
crease the range of its applicability from that discussed in
this paper. Obvious examples include considering in detail
other shapes of V and computing higher order multipoles.
We have showed that our method increases the accuracy of
computation while very significantly reducing the required
computational work.

In this paper the numerical example of an oblate spheroi-
dal geometry was discussed in detail to illustrate the pertur-
bation method and also to give guidelines for possible
improvements. The numerical algorithm which was em-
ployed for solving the nonlinear Maxwell–London equa-
tions provided more than sufficient accuracy, as seen from
experimental considerations: the uncertainty of the input

FIG. 3. The spheroidal components of the dimensionless current (see
experimental parameters significantly exceeds the accuracy(5.1)) at the surface of the spheroid (j 5 j0). The quantities plotted are
of the results obtained. For our computations we haveJh(j0 , h, w 5 488) (solid line) and Jw(j0 , h, w 5 488) (dashed line). We

have used Ha/H0 5 0.1, A/C 5 7, C 5 f/8, d 5 16. used Cray C90 and memory requirements were not the
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limiting factor. It is however possible to make various
nx 5 2

1
2

2
1 1 e2

2e3 (e 2 arctan(e)) (B2)improvements to the numerical algorithm. One could con-
sider nonuniformly spaced grid points along the j coordi-

is the appropriate demagnetization factor. The eccentricitynate, denser close to the j 5 j0 , in order to reduce the
is given by e 5 [A2/C2 2 1]1/2 5 1/j0 . In terms of spheroidaloverall number of grid points. It might also be advanta-
coordinates we have A 5 f(1 1 j0

2)1/2, C 5 fj0 and V 5geous to replace the Gauss–Seidel relaxation on G by some
(4f/3) f 3(1 1 j0

2)j0 . Including these expressions in Eq. (B1)other method, such as GMRES [23] or one of the various
we getmultigrid algorithms [19]. In future work we will consider

some of these improvements and investigate possible gen-
eralizations of the perturbation method presented in this

mi 5 2
2
3

f 3Ha
j0

1 1 1/(1 1 j2
0) 2 j0 arctan(1/j0)

(B3)
paper.

APPENDIX A and we recover mi 5 Sd f 3A1i .

The Nonlinear Relation j(vs) 2. Integral and Differential Operators

In order to express j(vs) from Eq. (2.16), we introduce The metric coefficients in oblate spheroidal coordinates
two coordinate systems: x 2 y, fixed in space such that the are given by [17]:
applied field is along the x-axis, and x9 2 y9 which is fixed
to the crystal. We consider an order parameter of the so

g11 5 f 2 j2 1 h2

1 1 j2 , (B4a)called d-wave form:

D 5 D0 sin(2f), (A1) g22 5 f 2 j2 1 h2

1 2 h2 , (B4b)

where f is the azimuthal angle referred to a node and D0 g33 5 f 2(1 1 j2)(1 2 h2). (B4c)
the gap amplitude. It has been shown [6] that in the field
range of experimental interest and with suitable assump- One can then calculate the appropriate elements of integra-
tions for the Fermi surface, Eq. (2.16) can be rewritten, at tion and differential operators. For example,
sufficiently low temperatures as

E
­V

dS 5 E1

21
dh E2f

0
dwf 2(1 1 j2)1/2(j2 1 h2)1/2, (B5)

jx9,y9 5 2erabvx9,y9 S1 2
t1

vc
uvx9,y9uD, (A2a)

E
V

dV 5 Ej0

0
dj E1

21
dh E2f

0
dwf 3(j2 1 h2). (B6)

jz 5 2ercvz S1 2
t2

vc

v2
x9 1 v2

y9

uvx9u 1 uvy9u
D, (A2b)

j0 corresponds to the value of j at the boundary ­V. The
gradient is

where t1 and t2 are constants, t1 5 (9f/64), t2 5 (3f/32).
The critical velocity is vc 5 D0/vf . We define here rab 5 = 5

(1 1 j2)1/2

f(j2 1 h2)1/2 ĵ­j 1
(1 2 h2)1/2

f(j2 1 h2)1/2 ĥ­h

(B7)
(c2/(4fe2))l22

ab and rc 5 rab(l2
ab/l2

c).

APPENDIX B 1
1

f(1 1 j2)1/2(1 2 h2)1/2 ŵ­w .

Quantities in Spheroidal Coordinates
To solve equations (2.6) the expression = 3 = 3 v should

1. Magnetic Moment be transformed to oblate spheroidal coordinates:
We show here that the expression for the longitudinal

f 2(= 3 = 3 v)j 5 a0­hhvj 1 a1­hvj 1 a2­wwvj 1 a3vj 1 a4­jhvhmagnetic moment for an oblate spheroid, given by Eq.
(3.8), is equivalent to the standard result expressed in terms 1 a5­jvh

1 a6­hvh 1 a7vhof the demagnetization factors. For a field applied along
the x axis, in the limit L̃ 5 0, we have [1] 1 a8­jwvw 1 a9­wvw , (B8)

f 2(= 3 = 3 v)h 5 b0­jhvj 1 b1­jvj 1 b2­hvj 1 b3vj 1 b4­jj vh
m0i ; m0x 5 2

HaV
4f(1 2 nx)

, (B1)
1 b5­jvh 1 b6­wwvh 1 b7vh

1 b8­hwvw 1 b9­wvw , (B9)where V is the volume of a spheroid and
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f 2(= 3 = 3 v)w 5 p0­jwvj 1 p1­wvj 1 p2­hwvh 1 p3­wvh
f1(j) 5 Haj 1 A1 S1 1

1
1 1 j2 2 j arctan(1/j)D, (B13a)

1 p4­jjvw 1 p5­hhvw 1 p6­j vw

1 p7­hvw 1 p8vw . (B10) f1'(j) 5 A1' S1 1
1

1 1 j2 2 j arctan(1/j)D, (B13b)

We recall that f is the focal length scale factor. The coeffi-
f2(j) 5 Ha(1 1 j2)1/2 1 A1 S j

(1 1 j2)1/2cients ai , bi , pi are given by (using the abbreviations u ;
(1 1 j2)1/2, s ; (1 2 h2)1/2, w ; (j2 1 h2)1/2):

2 (1 1 j2)1/2 arctan(1/j)D, (B13c)

a0 5 2
s
u

a4 5
s
u

b0 5 2
s2

u2 b4 5
s2

u2 p4 5 p5 5 2
s2

w2 ,

f2'(j) 5 A1' S j

(1 1 j2)1/2 2 (1 1 j2)1/2 arctan(1/j)D.

a1 5 2
h
j

b5 5
h
j

p6 5 2p7 5 2
2h
w2 , (B13d)

Terms with f1 and f2 represent the longitudinal part of Ha2 5 2
w
js

a9 5 b6 5 2
w
uh

2 p8 5 2
1

u2s2 ,
and those with f1' and f2' the transverse part.

a3 5
2h2 2 j2 1 3j2h2

w6 ,
APPENDIX C

Evaluation of m2 to O(«m0) for a Spherea5 5 2
u2h
js2 a6 5

u2

s2 b1 5 2
u4h
js4 b2 5

u3h
sw4 ,

(B11) We evaluate here the magnitude m2 for the example of
an isotropic spherical superconductor with a linear j(vs)a7 5 2

juh(3 1 j2 2 2h2)
sw6 ,

relation. We take the field along the z direction, since the
magnetic moment m2 is independent of this choice. As

a8 5 2
u
s

b8 5 p0 5
u
s

p2 5
1

sw
, explained in the text, we must find the internal fields by

solving (2.6) (which in this case reduces to the Helmholtz
equation) with boundary conditions enforcing continuityb3 5

jhs(3 1 2j2 2 h2)
uw6 ,

of Hw and Hu and external fields calculated in the « 5 0
limit. By symmetry, Hw ; 0 and we need only to impose
the continuity of Hu at the boundary, r 5 a. We obtain:b7 5 2

2j2 2 h2 2 3j2h2

w6 ,

p1 5 2
js3

uh
p3 5 2

js
u2w3 . Hu ; 2A

l2

r3 SS1 1
r2

l2D sinh(r/l)

(C1)

3. Magnetic Field Which Contributes to m 2
r
l

cosh(r/l)D sin u 5 S2Ha 1
m0

r3 D sin u.
We write down here explicitly the contributions to

the magnetic field which arise from the potential F given
A is a constant to be determined and m0 is given by Eq.by the sum of (3.6) and (3.9). From Eqs. (2.2a) and (B7)
(3.12). Since « 5 l/a ! 1 we can approximatewe have
sinh(a/l) P Ase(a/l). Keeping only the leading term in the
LHS of Eq. (C1) we get

Hj 5
(1 2 h2)1/2

(j2 1 h2)1/2 ( f1(j) cos w 1 f1'(j) sin w), (B12a)
A 5 3Hae2(a/l) (C2)

Hh 5 2
h

(j2 1 h2)1/2 ( f2(j) cos w 1 f2'(j) sin w), (B12b) and

Hw 5 2
1

(1 1 j2)1/2 ( f2(j) sin w 2 f2'(j) cos w), (B12c) Hu 5 2
3
2

Ha
a
r

e2(a2r)/l sin u. (C3)

We can now computewhere the functions f1(j), f2(j) are given by
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